Gas Laws
Idea of "Ideal Gas"
Model of a Gas $\rightarrow$ Appoximation ar Simplification
(1) Gas molecules can be treated as if they have mass but no size
$\Rightarrow$ as if a point mass
99.9\% of a gas is empty space

$10 \times$ diameter
before hitting something

mass is important not the volume of the molecule
(2) Gases travel in straight lines and only change direction speed through collisions.
(3) Gases have no IMF's

(1) Gases have mass, volume, pressure, temperature mass $\rightarrow$ \# moles $\Rightarrow 4$ variables


Explore Relationship between
Pressure a Temperature (Hold Volume $\&$ moles Constant)

moving faster $=$ more Collisions \& Stronger collisions = more force

Pressure $=$ force applied to an area


Relationship between Pressure \& Temperature
$u p p^{u_{p}} \alpha \quad T_{\text {op }}$
$\alpha=$ proportional
directly proportional means when one goes the other goes up
$P \propto T$ directly proportional

Pressure vs. Volume (hold moles temp constant)


Inversely proportional. They go in different directions
${ }^{\uparrow} A \propto B^{\uparrow}$ directly

$$
\uparrow A \propto \frac{1}{B} \downarrow \text { Inversely }
$$

Pressure vs. Moles (Temp \& Vol Constant

$\uparrow P \propto$ moles $\uparrow$
Directly proportional
 moles $\uparrow$

- More molecules per unit volume
- More Collisions
- more force on wall
- pressure goes UP 个

Summary
$P \propto$ moles
$P \propto$ Temp
$P \propto \frac{1}{\text { volume }}$

$$
P \propto \frac{n T}{V}
$$

- proportional

It tells how they trend

- more useful to have an equality

- Measure all 4 Varibles many times for many different gases 4. plot on graph

Formula for straight

$$
\begin{aligned}
y= & m x+b \\
& \uparrow \quad \uparrow \\
& \text { slope } \quad y \text {-Intercept }
\end{aligned}
$$

$$
P=m \frac{n T}{v}+b
$$

$$
P \propto \frac{n T}{V}
$$

Can make an equality with proportionality Constant $\Longrightarrow$ slope of the best fit line

$$
P=0.0821 \frac{\mathrm{Latm}}{\text { mole } k} \times \frac{n T}{V} \xrightarrow{\text { Equality }}
$$

$0.08205746 \frac{\text { Lati }}{\text { motet }}=$ Universal Gas Constant is a proportionality Constant from the best fit line.
We call it $R$

$$
\begin{aligned}
& R \text { to } 3 \text { sig figs }=0.0821 \frac{\text { atm }}{\text { mole } K} \\
& V \times P=R \frac{n T}{\gamma} \times \forall
\end{aligned}
$$

$$
P V=n R T \quad \text { Gas Law }
$$

Units

$$
\begin{aligned}
& P=\text { atm } \\
& V=L \\
& n=\text { moles } \\
& T=K \\
& R=\frac{L \cdot a t m}{\text { mole } \cdot K}
\end{aligned}
$$

Pressure
1 atm is the pressure on earth at sea level


Barrameter


$$
\begin{aligned}
& \text { Path } \downarrow=\text { mercury falls } \\
& \text { Path } \uparrow=\text { mercury rises } \\
& 1.00 \mathrm{~atm}=760 \mathrm{mmHg} \\
& 1.00 \mathrm{~atm}=760 \text { Torr } \\
& 1 \text { Torr }=1 \mathrm{mmHg}
\end{aligned}
$$

Temp Conversions

$$
\begin{aligned}
& K={ }^{\circ} \mathrm{C}+273.15 \\
& F^{\circ}={ }^{\circ} \mathrm{C} \times \frac{180}{100}+32 \cdot F \\
& { }^{\circ} \mathrm{C}=\left(F^{\circ}-32\right) \times \frac{100}{180}
\end{aligned}
$$

Gas $0 \longrightarrow$ motion $=$ temp


Examples
Calculate the volume of a gas that has a pressure of 0.723 atm , a temperature of $29.7^{\circ} \mathrm{C}$ and 0.623 moles.

$$
=21.4214456985 \mathrm{~L}
$$

$$
=21.4 \mathrm{~L}
$$

(1) make table of variables
(2) parce problem
(3) check units
(4) Convert unite if needed
(5) Solve equation
(6) Calculation
(7) Sig figs

$$
\begin{aligned}
& P=0.723 \mathrm{~atm}^{\prime} \\
& v=\text { ? } \\
& n=0.623 \text { moles } \\
& \frac{1}{\bar{X}} \times P \underline{=}=n R T \times \frac{1}{p} \\
& \frac{P V}{P}=\frac{n R T}{P}
\end{aligned}
$$

${ }^{\circ}$ K scale

2.76 g of Nitrogen gas is in a vessel with a volume of 2.50 L . If the gas is at $40.1^{\circ} \mathrm{C}$, what is the pressure in the Container in atmospheres?

$$
\begin{aligned}
& P=\text { ? } \\
& V=2.50 \mathrm{~L} \\
& n=2.76 \mathrm{~g} N_{2} \times \frac{1 \mathrm{~mole} W_{2}}{28.02 \mathrm{~g} N_{2}}=0.098 \frac{3}{4} 510706638 \text { moles }=0.0985 \mathrm{mdes} \mathrm{~N}_{2} \\
& R=0.0821 \frac{\mathrm{Latm}}{\mathrm{molK}} \\
& \begin{aligned}
& \\
&=\frac{470.11 / 5}{3132.5}+273.15
\end{aligned}=313.25 \mathrm{~K}=313.2 \mathrm{k} \\
& \text { molar mass } N_{2}=\frac{14.01 \mathrm{~g}}{1 \text { mole } N} \times 2=\frac{28.02 \mathrm{~g}}{1 \text { mole } N_{2}} \\
& \frac{P y^{n}}{x^{n}}=\frac{n R T}{x}
\end{aligned}
$$

$$
\begin{aligned}
& =1.013120560 \mathrm{~atm} \\
& =1.01 \mathrm{~atm}
\end{aligned}
$$

no Early Rounding

$$
=1.01329331906 \mathrm{~atm}=1.01 \mathrm{~atm}
$$

Idea
Solve $P V=n R T$ for $R$

$$
\begin{aligned}
& \frac{P V}{n T}=\frac{\nabla R X^{\prime}}{\nabla Z} \\
& \frac{P V}{n T}=R
\end{aligned}
$$

Now lets say I have 2 different Conditions

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{n_{1} T_{1}}=1^{\text {st }} \text { Conditions } \\
& \frac{P_{2} V_{2}}{n_{2} T_{2}}=2^{\text {nd }} \text { Conditions } \\
& \frac{P_{1} V_{1}}{n_{1} T_{1}}=\underbrace{R}_{n_{0} R_{1} \text { or } R_{2}}=\frac{P_{2} V_{2}}{n_{2} T_{2}} \\
& R \text { is always } \\
& 0.0821 \frac{\mathrm{ratm}}{\text { mol }} \\
& \phi \\
& \frac{P_{1} V_{1}}{n_{1} T_{1}}=\frac{P_{2} V_{2}}{n_{2} T_{2}}
\end{aligned}
$$

Combined Gas Law used for changing Conditions


$$
\begin{aligned}
& P_{2}=0.802 \mathrm{~atm} \\
& T_{2}=3.00{ }^{\circ} \mathrm{C} \\
& V_{2}=?
\end{aligned}
$$


$n_{2}=\times$ mole

$$
\begin{aligned}
& P_{1}=1.00 \mathrm{atom} \\
& T_{1}=25.0 \mathrm{C}^{2} \\
& V_{1}=1.00 \mathrm{~L} \\
& \Pi_{1}=\times \text { Mole }
\end{aligned} \quad \begin{aligned}
& \bar{P}_{2} T_{1} \\
& \\
& \frac{T_{2} P_{1} V_{1}}{P_{2} T_{1}}=V_{2} \\
& \\
& \frac{T_{2} P_{1} V_{1}}{T_{1} P_{2}}=V_{2}
\end{aligned}
$$

